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EXECUTIVE SUMMARY

Synthesisis an age-structured population assessment tool. It includes a population
simulation model to calculate the abundance and mortality of a harvested population, an
observation model to relate this population model to observable data from the population, and a
statistical model to adjust parameters of the population model and observation model to achieve
the best fit to all the data. Synthesis has both an age-structured and a size/age-structured version.
Both are capalle of simultaneously examining data from severd fisheries and several surveys,
each with its own patern of selectivity. Synthesis cal culates selectivity with modified logistic
functions. Parameters of these functions can take on time-specific values, thus allowing
flexibility to track changesin fishery seledivity. The goodness of fit is quantified in terms of a
log-likelihood function composed of independent terms for each kind of observation from each
type of fishery or survey. Synthesis estimates the best parameter values through numerical
calculation of parameter derivatives and applicaion of a modified Newton method. This
provides estimates of parameter variances and covariances, and provides for calculation of the
variance of spawning biomass through application of the delta method. Both versions of
synthesis al ow inclusi on and esti mation of spawner-recruitment functions. When detail ed age
composition data are lacking, the estimated spawner-recruitment aurve can be usedto generate
the entire time series of recruitments, thus turning synthesis into a simple production model. At
the other extreme, inclusion of the spawner-recruitment curve in data-rich models allows
estimation of this curve while takinginto account all available informaion. Although most
population modeling is done within unit stocks, age synthesis provides the capability to model up
to three geographic areas and to estimate the degree of migration between aress. Size synthesis
adds a body size dimension to the population. This allows fuller use of size-based data, and
allows estimation of growth curves while taking into account size-selectivity of the sampler and
taking into account the effect of variability in the age determination process.
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INTRODUCTION

The stock synthesis model* (Methot 1989, 1990) was developed to provide a bridge
between biomass-based assessment methods and full age-structured methods (Deriso et al. 1985;
Fournier and Archibald 1982). Subsequently, synthesis evolved to a flexible tool (Methot 1990)
and was used for many west coast and Alaska groundfish stock assessments during 1988-2000.
Synthesis consists of aforward population projection model that simulates the dynamics of a
stock within a statistical estimation framework. Between the population model and the statistical
model is an observation model designed to derive expected values for various fishery and survey
data. An underlying philosophy of synthesisisthe modeling of potential biases and variabilityin
the observation process, rather than requiring that data be highly preprocessed before analysis by
synthesis. This*bring the model to the data” philosophy creates an appearance of high model
complexity, but the underlying population model is not complex and this approach allows
realistic use of awide variety of data.

There is an age-only and a size/age va'sion of synthesis (these will be referred to as the
age and the size versions for simplicity). Both models have alargenumber of similar
characteristics, but there are also distinct differences.

Inthe age version, selectivity patterns are defined by:

. functions of age,
. body weight-at-age supplied as input vectors, and
. up to three geographic areas with explicit migration patterns.

In the size version, the population model includes:

. age and size dimensions through inclusion of an explicit growth function,
. selectivity patterns as functions of size and/or age, and
. body weight-at-age calculated from the interaction of size-selectivity and

the modeled probability distribution of size-at-age.

Geographic structure is not yet included in the 9ze model. In bath configurations, synthesis
maintains a full age-structured description of the population and employs conventional equaions
to describe the population dynamics. A wide hierarchical range of model complexity can be
defined for either version (Methot 1998). At one extreme, the model can be used with no age or
size data (with extemal estimation of sdectivity and weight-at-age) and the estimation process
can be condensal to afew stock-recruitment parameters that mimic stock-reduction analysis
(Kimuraand Tagart 1982). On the other extreme, inclusion of a vector of parametersto allow
time-varying fishery selectivity allows synthesis to closely track fluctuationsin a complete
fishery catch-at-age database

! The overview of stock synthesis given here complements and updates that in Methot (1990). A
more detailed user manual is available from the author.
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The performance of synthessin avariety of situations has been evaluated through its
gpplicationto s mulated data. Benceet d. (1993) investigat ed the i mportance of adult surveys
versus recruitment surveys in stabilizing the results of model results. Sampson (1993) explored
the importance of providing sufficient flexibility in the specification of fishery selectivity.
Methot (1994) showed that the size model was capable of extracting information on population
characteristics from size composition data. 1n 1996-1997, the National Research Council’s
evaluation of stock-assessment methods (NRC 1998) demonstrated that complex models such as
synthesis were necessary to account for biasesin data. Most recently, Sampson and Yin (1998)
investigated the model’ s performance under a range of data variability and population
characteristics.



BASIC POPULATION DYNAMICS

The population simulation, in its simplest form, specifies the numbers-at-age in the
beginning year of the simulation, the numbers of recruits in each subsequent year, and the
survival rate for each cohort as it moves through the population. These dynamicsapply equdly
to the age and size models. Variables and notations identified here and throughout the document
arelisted in Appendix A.

a agesforl a A

y yearsforl y Y

J fisheriesforl j A,

M, instantaneous rate of natural mortality

W, body wei ght- at-age for fishery or survey |

Sy s ectivity at agefor fishery or survey |

f, annud fishing morta ity factor for fishery |

Fro =TSy fishing mortdity at age for fishery | Q)
Z,=M,+ (F,) total mortality rate (2
N, popul ation numbers at start of year y for agea

]Vya=Nya(1 -e 7ZY“)/Zya mean numbersin year y (3
Cai"N,uF, o catch numbers for fishery j (4

C,i= (g Wy) catch biomass for fishery or survey | (%)
N, g =N,e e survivors, fora<A (6)
N, 14 =Ny,A_1e_Zy"“‘1 +NyAe_ZyA survivors, fora=A (7)

The above equations define a situation in which both sexes are identical and mortality is
continuous throughout the year. Throughout this report, with afew exceptions, the notation and
discussion will refer to age and to size, but not to sex. However, synthesis can beused in a
combined sex or a separate sex mode, with the latter allowing malesto differ from femalesin
morta ity, growth, and sl ectivity.
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Also, timeisreferred to only as year, except for the monthly steps used to calculate
growth in the size model. However, both the age and the size model are capable of defining up
to four time periods within the year so that seasonal fisheries can be more accurately modeled.
The month of spawning isidentified so that mortality occurring during the early part of the year
is accounted for when calculating spawning biomass. Similarly, each survey isassigned a
specific month of occurrence so that pre-survey mortality and growth can be accounted.

Fishing M ortality

The total catch biomass, C,;, istypically known with high precision relative to other types
of information. Because there is a one-to-one correspondence between the level of C; and f;, the
values of thef,; can be continuously adjusted within the model so that the calculated C; will
nearly exactly match the observed C;. Inthistypical case thereis nil deviation between observed
and expected C;, and the likelihood contribution for the fit to the C; is nil. However, aternative
approaches to specifying and estimating thef,; are available in synthesis. Any number of the f;
can be estimated as free model parameters or assigned a fixed value; in these cases there may be
some deviation between the observed and calculated C,;. Finally, thef,; can be made a linear
function of input data on fishing effort. Thislatter option can be elaborated further to include

predators and cannibalism in the model (Livingston and Methot 1999).

yi?

Selectivity Functions

Several approaches to specifying selectivity patterns are available in synthesis. These
approaches indude using one paameter for each age, seledion of asingle age (such asa
recruitment index), and patterns based upon logistic functions. Selectivity is often modeled in
synthesis asthe product of two logistic functiors,

T

e Y e (®)
(I+e ™ ")(1+e™" ™)

B

where to ,aepaametersto be estimated by the modd, and the temporary quantity T, isa
calculated scaling factor such that max ( ,) is1.0. Thisfour-parameter “double logistic”
formulation allows the selectivity pattern to be dome-shaped or asymptotic on either the left or
right side (Figure 1). The parameters ,and , have values of age (or size in the size model) and
areinterpreted as inflection points. The parametes ; and , affect the stegoness of these
functions. When either has alow value there will be a stronger interaction between the values of
the ascending and descending parameters. Thesynthesis implementation allowsthe selectivity
parameters to be time-invariant, and specifically, time-invariant within a defined range of years.
This synthesis implementation allows various ways to change sdectivity over time, as defined
by: a specific range of years, year-specific, or as afunction of an independent variable (such as
mean depth of fishing).
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A more complex function is necessary to isolate the ascending from the descending
portions of the selectivity curve. Before defining this more general selectivity function, itis
useful to define a generic building block termed a“ constrained logistic” fundion. This four
parameter fundion is used as a building block for complex selectivity patterns, for age-specific
migration functions in the age model, and for size-specific market category partitionsin the size
model.

The constrained logistic function, g, requires four parameters, ,, ,, 3 4 andadefined
age (or size) interval, T, to T,. ,and , arethevaluesof the function at theinterval limits, T,
andT,. ,and ,areparametersof thelogistic function. When the slope parameter, ,, goesto
zero, the inflection parameter, ,, can be ignored and the overall function becomes asimple
linear interpol&ion between thelevels , and ,. The parameters ; and , will both be
estimable by the model in some situations, and in other situations one or the other will be set at
equal to 1.0.

6 g @-ATY) o
g(a) Bl (ﬁz Bl) (f(T2) _f(Tl)) ©)

using the simple logistic function defined in eq. 10:
fay=——— (10)

(1 te ’B3(a’ﬁ4))
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Figure 1. Examples of selectivity function shapes derived from the double logistic fundion. The
dotted line is ascending curve, dashed line is descending curve, and solid line is the product
scaled to amaximum of 1.0.
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Synthesisis configured to alow the use of the constrained logistic to create ascending
only, descending only, or dome-shagped selectivity functions. When it is used in the dome-shaped
mode, it is necessary to use an additional parameter (TR) to define the age (size) at which the
transition occurs from the ascending to the descending side of the function. Inthiscase, TR
becomes the upper limit, T2, for the ascending function; and TR+1 becomes the lower limit, T1,
for the descending function. The resulting function can have zero to seven freeparameters. The
formulation allows use of a nested design to investigate the gain from including more free
parameters. Examples of these selectivity functions arein the Table 1 and in Figure 2.

Table 1. Parameters used in creging double logistic selectivity functions.

Side Parameter Example 1: Example 2: Example 3:
L abel Complete Ascending only Line segment
(7 free parameters) (3 free parameters) (3 free parameters)
Ascending T1 1 1 1
T2 TR A TR
Initial selectivity 2 3 3a
Slope 1a 1a 0.0
Inflection % 2a N/A
Terminal selectivity 4a 1.0 2 1.0 2 1.0
Descending T1 TR+1 N/A N/A
T2 A N/A N/A
Initial selectivity g 1.0 N/A q 1.0
Slope 1d N/A N/A
Inflection 2d N/A N/A

Terminal selectivity ad N/A 4d
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Figure 2. Examples of selectivity function shapes derived from the constrained log stic function.

First isalinear segment with 3 free parameters (selectivity at min and max age, age at peak

selectivity). Second is ascending selectivity with 3 free parameters (selectivity at min age, age at
inflection, relaive slope at inflection). Third istheflexible configuration at a maximum,
including male selectivity as differing from female selectivity.




When the model is configured to have separate sexes, synthesis uses a three parameter
function to define male selecti vity rel ative to female sd ectivity,

(Inax(as‘3 g) - B g)

by P@,-10)] (a1)

B,.,-B,[10+|

where:
8 isthe age (or size) at which male slectivity begins to deviatefrom female
selectivity (below this age (or size) male selectivity equal s that of females),

9 isthe male selectivity at age A (or maximum size) relative to female selectivity at
age A (or maximum size). (Note this can have values greater than or less than
1.0), and

o 1sanexponent that defines the rate & which male seledivity deviates from female
selectivity (avalue of 1.0 will cause alinear change in the ratio of male to female
selectivity).

Recruitment and Initial Age Composition

Synthesis includes the ability to define the initial age composition and all subsequent
recruitments with many independent parameters (one for each year and for each agein the initial
year), or to define all from atwo-parameter spavner-recruitment (S-R) function. The
Beverton-Holt spawner-recruitment function is defined according to Kimura (1988) as:

S

yh
R-R % (12)
y 2 S !
1-R(1- g—"
0
where
h is the number of years between spawning and reauitment,

R, is the parameter defining the degree of density-dependence, and
R, isthe parameter defining level of the recruitment curve.

The initial maturefemale biomass (or egg produdion) is calculated from R, and natural
morta ity,

B 1 1
S0=tf Rz[ﬁ e :|Wla0maJya +Ry| = — P04y
a=1 a=1 -e 4

(13)
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In subsequent years, mature femalebiomass (or egg production) that spawned the fish recruiting
inyearyis

Sy—h = 2; Ny—h,a I/I/;z—h,aoma']ya ! (14)

where egg production by maure spawnersis.

Jya= 1+ W - (15)

With J; =0and J, = 1, egg production will be equivdent to female spavning biomass.

Intermediate options are available so that some poorly estimable recruitments can be
taken from the S-R function while others are estimated as individual parameters. When all
recruitments are taken fromthe SR function, synthess essentia ly becomes an explicitly
age-structured stock-reduction analysis (Kimuraand Tagart 1982). The manner in which the
individually estimated recruitments are compared to the S-R function is described later.

Theinitial population age composition isfirst defined asin equilibrium with the initial
recruitment level, R,,, and with alevel of fishing mortality that is either (1) calculated as the
level that would produce the initial equilibrium catch, (2) estimated as afree parameter, or (3) set
equal to auser-supplied level. Theinitial recruitment level, R,,, may be set as an independent
parameter, or set equal to the unfished recruitment level, R,, from the spawner-recruitment curve.

Ny =Ry a=1, (16)

Nl,a:Nl,a—le_Za_l 2<a<A, (17)
e “Zy

Moo= Ny —— a=A, (18)
l-e ™

where:

Ry istheinitial recruitment parameter,

Z, =M, +f, 4 isthe total instantaneous mortality, and (29

for istheinitial fishing mortality factor, calculated to generate a catch

equal to the historical equilibrium catch level for fishery type 1
(alternatively, this can be set as amodel parameter).

After calculating the initial equlibrium age composition, zero to all of these numbers-a-
ageintheinitial year can be replaced by alevel determined by a specific parameter:
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N, = Rya fora A ,ifA >0, (20)
A last age for which individual parameterisused,0 A, A, and
Roa parameters defining initial numbers-at-age.

Migration

In the age model there can be up to three geographic strata (areas). There are two options
for distributing fish between the areas: an annual apportionment (vulnerability) approach and a
true migration approach.

In the vulnerability option, the population is goportioned, on an age-specific basis,
annually between the areas. Each fishery and survey operatesin just one of the areas, and the
population is completely mixed and re-apportioned at the beginning of the next year. The
age-specific population in each areais proportional to the total population because of the
complete re-mixing each year, even though all of thefishing mortality may occur in one area.
This vulnerability approach has been used in the Pacific whiting stock assessment to model the
annual distribution of the stock across the US-Canada border (Methot and Dorn 1995).

In the migration approach, an age-specificfraction of the fish in each area migrates
annually into each of the other areas. In this approach, effects of an intense fishery in one area
initially will primarily affect that area and then slowly affect other areas accordingto the rate of
migration.

In both approaches, the constrained logistic function (Equation 9) is used to define the
age-specific vector. In the vulnerability configuration, four parameters (for each sex) define the
age-specific fraction found in area 1.

Y., fractioninareal at a= minage,
Y,, fractioninarealata=A.
Y;,  inflection age of logistic function, and
Y,, slopeof logistic function.

If there are three areas, then a second set of four parameters define the fractionsin Area2, with
the remainder being in Area 3.

In the true migration approach, a more complex set of parametersis needed. With two
areas and one sex there will be nine parameters:
1 parameter - fraction of recruits found in area 1 (assumed same for both sexes);
4 parameters - migration from Area 1 to Area 2:
Y,, fraction at a=minage that move from area1to area 2,

Y,, fractionat a=A that move from area 1 to area 2,
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Y;,  inflection age of constrained logistic function, and

Y,,  slopeof constrained logistic function;

4 parameters - migration from Area 2 to Area 1 (as described above).
With three areas and one sex there woud have to be 26 parameters defined (although many will
have values fixed by the user and not be freely estimated by the model):

1 parameter - fraction of recruitsfound in Areal;

4 parameters - migration from Area 1 to 2 (as described above);

4 parameters - migration from Area1to 3;

1 parameter - fraction of recruitsnot in Area 1 that arein Area 2 (remainder are in Area 3);

4 parameters - migration from Area2to 1,

4 parameters - migration from Area2 to 3;

4 parameters - migration from Area3to 1,

4 parameters - migration from Area 3 to 2.
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OBSERVATION MODEL

Abundance I ndex

The abundance index (G) for asurvey is expected to be proportional to the modedl's
estimate of available biomass, B, at thetime of year, , of the survey. Thus, it isalgebraically
equivalent to fishery catch per unit effort:

Byj - Ea Ny+1:,aBaj W;zaj ! (21)
G,=0,,B, . (22)

If the survey is expanded to a measurement of absolute biomass, then the constant of
proportionality (catchability coeffident), Q,;, is 1.0 or some other externally derived value. Even
inthis case, the selectivities, , still dlow some agesto contribute less than fully to the survey. In
most cases the survey isinterpreted ssimply as arelative index of population biomass. In this case,
the scaling factor is calculated so that the mean log deviation is zero:

[Ey ln(Gyj/Gyj)]
Q=e 2, , (23)

where the summation is over the years, y, for which observations are available.

For fishery CPUE, the treatment is similar to that for a survey, however it isimportant to be
able to consider a nonlinear relationship between the population abundance and the observed
index. Thisisdone by making the catchability coeffident, Q, a power function of population
abundance.

0, QUBijZJ Is the catchability coefficient for fisheryinyeary, (24)

A

G,.=0 B isthe predicted value for fishery CPUE , (25)
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. C.
i Y isthe predicted value for fishery effort, E, (26)
G,
B, = Za N, ﬁyaj W is the estimated biomass available to the fishery, and (27)
Q,; isthe parameter that is commonly set to 0.0, but when

estimated provides for a non-linear relationship between
fishery CPUE and the biomass avail abl e to the fishery.

Equation 26 shows that fishery data can be input as fishery effort rather than fishery CPUE,
without any change in the population or observation model equations.

Age Composition

Age composition samples are considered to be random samples of the exploitable (i.e.
selected) stock. However, observed fishery or survey age compositions are not compared drectly
to the model’ s estimate of sampled numbers-at-age, ¢, . Instead, it is recognized that the
observations have some level of ageing imprecision and that the observed “ages’ arejust bins, i,
associated with some age determination method. Ageing imprecision causes strong year classes to
smear into adjacent weaker year classes and flattens the overall vector of age composition (Tyler et
al. 1989). Consequently, the level of ageing imprecision interacts with the variance of recruitment
and the slope of selectivity functions. With high levels of ageing imprecision, the model can
estimate high year-to-year fluctuations in recruitment, then blur the resulting population age
compositi on according to the level of ageing imprecision to produce expected sample age
compositions that are as blurred as the observed age composition data. Later in the size modd,
ageing imprecision will be shown to flatten the vector of observed mean size-at-age daa also.

Bins of “observed age” can be defined in terms of nearly any transformation of true age,
including transforming ageto size”. These bins have an arbitrary definition and can be of variable
width. The transformation of true age into binsis according to an imprecision matrix. Four kinds,
k, of imprecision matrices (Methot 1990) can be defined:

1. A one-to-one correspondence between atrue age and an bin of measured age.
2. Normal distribution of measured age for each true age.

3. User defined matrix which can incorporate bias and imprecision in conversion of true
age to measured age.

4. Transformation of true age into size bins using the growth curve and variability of
Size-at-age.

21n the age model, all sampling is donein termsof age. Thesampled age composition can then be
transformed into an estimated size composition as shown here. In the sizemodel, the population has
explicit size/age structure and the sampling in terms of age and size selectivity produces a sizelage
structured sample that will be collapsed across ages to get the sample size composition.
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From aparticular sample, ¢, ,;, the model can generate an expected value for each kind of
age observation. When there are age data from multiple methods (e.g., otoliths, scales, fish size),
the simultaneous inclusion of each method’ s observation into synthesis assists in cross-calibration
of the methods. Application of an ageing imprecision matrix, ., to the sampled numbers-at-age,
Cy,» Produces an estimated bin distribution that can be compared to the observed age (or Sze€) bin
distribution, py;;,.

ﬁ yjik - 2; Qiakcyaj ! (28)
where:
ok isthe proportion of age a fish assigned to bin i according to the ageing
method kK,
A
i Q. .=10,and (29)
i=1
A is the number of bins defined for the kth ageing method.

The level of ageing imprecision for the second kind of age observation is commonly
determined by the observed level of agreement between agereaders. Synthesis allows the user to
input a vector of percent agreement for each true age, or to input two parameters that define a trend
in ageing precision. These two parameters can be in terms of standard devidion of observed age,
percent correct, or percent agreement. The following relationships allow inter-conversion of
ageing standard deviation, percent correct, and percent agreement under the assumption of a
normal distribution of observed “age’ at each true age:

a+0.5

%, = f N(a,05,) , (30)
a-05

%, = Yo, +2(%,, Y +2(%,,)" | (31)

where:

%, isthe probability that a given assigned age will be correct,

%,, Iistheprobability that two independent ages will be incorrect by 1year and Hill
agree,

%,, isthe probability that two independent ages will be incorrect by 2 years and still
agree,
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%, isthe probability that two independent ages will agree (ignoring probability of being

off by more than 2 years and still agreeing), and

+a Isthestandard deviation of anormal distribution of ageing imprecision.

The expected probabil ity distribution across bins for fish that are in the accumulator age
requires special cons deration. T he accumulator age will contain some fish that have atrue age
much greater than the exact acaumulator age. Presumably these older fish havealower probability
of being mis-aged as younger fish. The expected bin probability distribution for fish in the
accumulator age is a discounted contribution from the expected bin distributions of fish that are
exactly at the accumulator age plus that of fish at older ages. The level of this discount should take
into account natural mortality, fishing mortality, and declining selectivity for older fish. These
potential contributions to the discount are smplified by setting the discount factor equal to natural
mortality plus avalue defined by a parameter specific to this purpose. Typically this discount
parameter is set equal to natural mortality so that the overall discount factor is twice the rae of
naturd mortality.

Split-Sex Features

When synthesisis configured with two sexes, the sample matrix, ¢, has an additional
dimension of sex. Thesubsequent generation of an expeced value for thesize composition data
(or age compodtion data below) can occur for: combined sexes, femde only, maleonly, or split
sexes. Of thesefour options, only the last preservesthe sex ratio information inthe sample. In
addition, when the sexes diffe greatly in body size, mis-sexing can affect the distributionsof size
for each sex. Thesize version of synthesis includes amis-sexing parameer to account for this
phenomenon. In this case, the expected size composition for one sex is equal to the sum of the size
composition for correctly sexed individuals of that sex plus the expected size composition for
incorrectly sexed individuals of the other sex.
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STATISTICAL MODEL

L og-L ikelihood Components

The comparison between observed and expected values is quantified in terms of
log-likelihood, | which is aweighted sum of separae log-likelihood components for each data
source and kind of observation. The total log-likelihood is the weighted sum of the individual
components (indexed by source of data, j, and kind of observation, k), plus special components for
spawner-recruitment and parameter priors (Table 2):

A =[ Z:, Ek wjkgejk] + 0Lyt Wy gy W, (32)

where:
isthetotal log-likelihood that will be maximized,
Wi isaweighting factor for each likelihood component, and

are the individual 1og-likelihood components for each fishery and survey, j, and
each kind of observation, k.
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Table 2. Components of log-likelihood.

index Source Kind Error Structure
.9 fishery | catch lognormal
J,0 fishery | catch per unit effort (CPUE)  lognormal
or effort
j,1 fishery | perfect ages multinomial
J,2 fishery | imprecise ages multinomial
j,3 fishery | biased ages multinomial
4 fishery | Size multinomial
j,5 fishery | mean size-at-age normal
j,6 fishery | agedigtributioninsizerange  multinomial
7 fishery | market category distribution ~ multinomial
j,0 survey abundance index lognormal
j,1 urvey j perfect ages multinomial
J,2 survey imprecise ages multinomial
j,3 urvey j biased ages multinomial
4 urvey j Size multinomial
j,5 urvey | mean Size-at-age normal
j,6 urvey agedistribution in sizerange  multinomial
R1 spawner-recruit recruitment deviations lognormal
R2 spawner-recruit mean and variance normal
priors parameter deviations lognormal
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Abundance I ndex

The log-likelihood for fishery catch, fishery CPUE or fishery effort observation, or for a
survey abundance observaion is defined as:

In(G. /G
L ,=-05 Zy [( %/G”))z -In(o, )|, (33)

2y

where:

G, is the observation, and

S, Isthestandard error of In(G,)). Itis preferable to use standard errors estimated from
sampling statistics for each G;. Alternatively, asingle fixed value of s, ,; can be
used for the entire time series. Finally, synthesis can do iterative re-weighting by
using the root mean squared error (RMSE in Equation 34) of the current fit as the
estimate of s, ;.

isthe RMSE. (34)

Y1

y

J Y. In(G,/G )P

Age or Size Composition

The log-likelihood for the fit to age composition observations from fishery or survey source
J, and ageing method K, is defined according to a multinomial error structure. The multinomial
error structure is appropriate because it implicitly assumes greater precision (smaller coefficient of
variation) for age (or size) binswith larger proportions than for bins with smaller proportions.

L, - Ey [vyjk ). [p aln@,) - p yﬁkln(pyﬁk)ﬂ , (35)
where:
Uz istheassigned sample size for the observation,

Pk  iStheobserved proportionin each age bini, and

A

P is the estimated proportion in each age bini.
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The second term in brackets depends only on the observed proportions, so it is a constant that
causes the logHikelihood for the observation to approach zero from below as the model fit

improves (i.e. asthe p , approach the p, . ).

Although sample size, , entersthis calcuation, the absolutevalue of the samplesize

(which may be many thousands of fish measured) should not be interpreted literally because of the
several additional contributions to variability in the observed age composition (Crone 1995). The
recommended maximum level for the sasmple size, , was 400 in Fournier and Archibald (1982).
In many recent synthesis applications, avalue of 200 has been used (which produces an expected
coefficient of variation (CV) of approximately 20% for a bin with 10% of the distribution’s mass).
Where sampling statistics are able to produce an estimate of the precision of the resulting size and
age composition data, then the sample sizes assigned in synthesis should be selectedto mimic this
level of precision (Crone 1995).

The goodness of fit between the observed and expected proportions can be used to calcuate
an effective sample size for the sample. The expected variance of aproportionis:

var(p) = p(-p) : (36)
v

Var(p) is also the expected value for (p-p)?, so the effective sample size for a multinomial
observation can be approximated by the ratio estimator:

E pl(l _p,’)
effective v = m . (37)

When this approach was used for analysis of the simulated data sets provided by the National
Research Council (NRC 1998), the effective sample sizes calculated by synthesis from the
residuals of the age composition fits (Methot 1998) were similar to the actual sample sizes used to
generate the data.

Spawner Recruitment

The likelihood components for the recruitment information is composed of two parts. The
first of these componentsisfor deviations between recruitment estimates for individual years and
predicted values from the estimated spawner-reauitment (S-R) curve. Including this component in
the estimation procedure tends to draw individual recruitment estimates towards the S-R curve.
Algebraically, thislooks no different than to posit tha the S-R curve is arecruitment survey, so
care must be taken in setting the level of variance, o, for deviations from the S-R curve. The

second component is related to the degree to which the estimated S-R curve and recruitment
variability parameter are good fits for the observed mean and variability of the individual year
recruitment parameters respectively. Either component may be excluded from consideration by
setting anil emphasis (w ~ 0).
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The first component is defined as:

In(R /R
L= -05%, (M)z ~In(a,)|, (38)
Or

where:

R, isthe estimated recruitment in yeary,

fiy isthe predicted recruitment in year y from the S-R relationship, and

Op isthe recruitment standard deviation (a model parameter).
The second component is calculated as:

(0r=0p)]2 1 |2
L .,=-0.5 % ~In(03/4,) - 0.5 ~1n(0 /4,) , (39)
Ox/A, R
where:
4, R
T1 isthe sum of lognormal deviations = Eln( Ty) : (40)
y Ry
A, is the number of estimated recruitments, and (41)
A4, R 2
6'p= | —X ln( T”) } is the root mean squared error of recruitments.
7% .
(42)

by:

Parameter Priors

A prior can be established for any parameter and entered into alog-likelihood component

2
gee=—0.52(w) | 43)

n oe,n
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where:
n is the parameter index for which a prior is defined,
0, istheestimated parameter value,
0, isthe prior value for the parameter, and

isthe standard deviation for the parameter’ s prior.
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SIZE-AGE MODEL

Overview

The previous sections describe the basic age-structured population dynamics, the
observation model in age synthesis, and the statistical model in synthesis. The observation model
in age synthesis includes a method to examine size composition data. In that method, a matrix
containing the probability distribution of size-at-age transforms the model’ s estimate of the
sampled true age composition into an expected value for the size composition of that sample
(observation kind = 4). The size-age model differs from the age model by doing the size-at-age
calculations in the population model rather than the observation model. These calculations are
done by using the mean and variance of size-at-age to expand the population numbers-at-age into a
matrix of population numbers-at-age and size. Then age- and size-based selectivities are applied to
generate a sampled numbers matrix with age and size dimensions. The distribution of sampled
numbers at size within each age is used with a weight-at-length function to cal culate mean body
wel ght- at-age for each type of sample. This differs from the age mode, which treats body
weight-at-age as a fixed input vector. The ageing imprecision matrix transforms the sampled
numbers-at-age and size matrix into amatrix of observed numbers-at-bin and size. Marginal totals
from this last matrix produce expected values for size distribution and for bin distribution. Further,
the size-age model is configured to calculate the mean size-at-bin, So mean size-at-age data
normally fit outside of assessment models can now be fully integrated into the assessment model
while taking into account effectsof size selectivity and ageing imprecision. Finally, size synthesis
can calculate the bin distribution within a specified size range, which allows synthesis to compare
its output to a row of an age-length key.

Growth M odel

The growth model follows the von Bertalanffy growth equation as parameterized by
Schnute (1981). Synthesis uses the growth curve and variability aout this growth curve to
calculate the probability distribution of size-at-age in each month of the year:

L = N(L,, 03,,) (44)

where:

Lya is the mean size-at-age (Equation 45), and

o§ 4o 1sthevariability of size-at-age.
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Growth isassumed to be continuous throughout the year and is evaluaed using fractional agesin
monthly steps’. For all agesin the first month of the first year (or for therecruitment age in the
first month of each subsequent year) the mean size-at-age is calculated from:

where:

L,=L +@L-L)e ™™, (45)

Lya isthe mean size at age a, at midpoint of first month (with age taking the non-integer
value equal to a+ 1/24),

t, Is the reference age near the youngest age well represented in the data,

L, isthe size at aget, (this parameter, like most parameters, can be year-specific so
that different cohorts recruit with a different body size),

Vv is the growth coefficient, and

L is the mean asymptotic size at infinite age (calculated from Equation 46),.

B (Lz_l’l)

L. =L+ W , (46)

t, is areference age which should be near the oldest age well represented in the data,
or set at avery large age(like 999) to let the following parameter essentially bel ,
and

L, isthe size-at-age, t, (this model parameter can be year-specific so that the

asymptotic size towards which fish grow can change over time. Notethat if L,
decreases so tha L becomes less than the current mean body size of fish at agiven
age, this cohort retains its current size and does not shrink).

For months 2 through 12 within the year, the mean size-at-age is cdculated from:

L

V,a+t

L,*+(L,-L)(e “7*1-1.0), (47)

3 Because synthess uses fractional ages throughout the year, data used for an extemally estimated

growth function must be indexed appropriately in order to produce a function appropriate for usein
synthesis. Typically fish are labeled as being a particular age throughout the year no matter when during
the year they are collected. For synthesis, fish need to be identified as their real age relative to a January 1
birth date. For example, a growth curve fit to samples collected in mid-summer would need to have the 4-
year-old fish specified as age 4.5.
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where:
is elapsed time (in decimal years) since mid-point of the first month of the year.
For the following year, mean size-at-age is calculated as:

L

y+la+l -

L +(L,~L) (e "-1.0). (48)

M odifications for size-specific aurvivorship

When there is a change in fishery size-selectivity within the size range of a particular age,
the size composition of the survivors will differ from the unfished size composition. The
magnitude of this effect depends upon the steepness of the change in size-selectivity and the
magnitude of thefishing mortality. Synthesis provides the option to ignore this effect, or to
incorporate it through a change in the mean size-at-age of the survivors. Theshape of the
distribution of size-at-age is unchanged (no skewness or kurtosis is introduced).

Thefirst stepisto calculate theratio, , of mean size-at-age of survivorsto the initial mean
Size-at-age. This calculation uses the size-at-age distribution in the month that is the middle of the
time period because thisis the size-a-age distribution that the fishery (with continuous mortality
throughout the time period) actsupon. Thetimeseriesof for acohort is used to modify Equation
48 which calculaes the mean size-a-age of a cohort at the beginning of the next year. This
modification includes an adjustment to the asymptotic size towards which the cohort is growing
under the assumption that the distribution of size-at-age represents a distribution of growth
potential. Thisadjustmentto L isthe product of all the previous ratios experienced by a cohort
during its lifetime.

_ _ ~ _V_
Ly+ la+1~ nya[Lya+[Lya Lw( ﬁ Tl:y—aﬂx,u)] (e 10)]

a=1

(49)
Size-at-age in accumulator age

For fish in the accumulator age, the calculation of mean size-at-age must take into account
the fish that are exactly at the accumulator age, aswdl as older fish that are larger. Therelative
contribution of these older fish must be discounted by their cumulative mortality. Intheinitial
year, this discounting uses the natural mortality rate so that the calculated mean size within the
accumulator age, A, is:

L, =2, (50)
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where the temporary variebles K0, K1, K2, and K3 are calculated as:

K0 = f e Ma4 (51)
a=4

K3  istheageat whiche™®*=0.01, and

Kl - i e M@ +(L,-L)e "), (52)
a=A

Also, for later use in calculation of variability in size-at-age:

K2 = f:e'M(“‘A)[Lw+(L1—Lm)e_V(a_tl)]z . (53)
a=A4

In subsequent years, the fish at age A and age A-1 in the previous year are each grown towards the
current level of L (creating thetemporary size valuesL’ in eg. 55 and 56). The weighted sum of
these two sizesis then calculated and used as the mean size-at-age A in the current year:

N L~ + N L~
—_yL4-1 7™ y-14-1 y-14 ™ y-14
LyA_ (N + N ) ! (54)
y-14-1 y-14
where:
L;A_l=Ly_1A_1+(Ly_M_1—Ly_l,w)(e’V—l.O) , and (55)
L;AzLy_1A+(Ly_1A—Ly_l,w)(e‘V—l.O). (56)

Variability in size-at-age

Variability of size-at-age typically is defined as anormal distribution with variance
increasing as a linear function of mean size-at-age. Two parameters are used to indicate the level
of variability at sizesL, and atL , respectively. Thelevel of variability for each ageislinearly
interpolated from these two parameter values and from theL
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(L,-L)

o —_— .
ZL.-L))

Lya = Or1 * (0,,-0,1) (57)

In one dternative option, the calculated | , isinterpreted asaCV and multiplied by theL,
to get the estimated standard devi ation of s ze-at-age. This option allows a different rate of change
in |, with respect to age, and may mare closely match externally derived relationships.

In another option the variance is defined as alognormal, rather than normal, distribution of
size-at-age. This option creates alonger upper tail to the size-at-age distributionto more closely
match some observed patterns. Synthesis mimics the standard deviation of the lognormal
distribution with the CV of the normal distribution.

An approximation is necessary to propagate the variability in size-at-age into the
accumulator age. This variability has one component from the variability of size at each age, and
a second component from the variahility between the mean sizes of the infinite tail of ages within
the accumulator age. The following processis usad to calculate thelevel of variability in the first
year:

- (KI1*K1)

KO0
Oria = 02,2 + X0 : (58)

(KO, K1, K2 were calculated in Equations 51, 52 and 53.)

In subsequent years, variability in 9ze-at-age in the accumulator age is calculated from:

_ N, 141925141 % Nyova Oryora
G4 N N - (59)
N1 * Ny )

Probability distribution of size-at-age

Subsequent to cal culating the mean and variability of size-at-age synthesis calculates the
probability distribution of size-at-age and parses this distribution into user-defined size bins.
These bins may be of variable width, and typically 25 binsare used. The matrix, , containsthe
probability distribution of size, s, for each age, a, at apoint in time, y.

I2,s+1

$p= [ NL,yp07,0 (60)

I

S
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where:

I bin boundariesfor size s, and

A
2 b= 1.0. (61)

s=1

The vector, N,,, contains the population numbers-at-age. The product of this vector and
is the popuation numbers-at-age and 9ze. Figure 3 illustrates the population numbers-at-age'size
inatypica model configuration.

Size-Age Sdectivity

Size- and age-slectivity will act on the estimaed popul ation numbers-at-age/sizeto
produce a matrix of sampled numbers-at-age/size. Simultaneous use of both size- and
age-selectivity may be necessary to model relevant phenomena. For example, small fish may have
alower probability of being retained by the fishing gear, and older fish may migrae out of the
sampling area. The selectivity for a particular size/age is the product of the size- and
age-selectivity, so no age/size bin may have a selectivity equal to 1.0. These selectivity values
pose no algebraic problem, but may complicate interpretation of the asolute value of the
catchability coefficient to which these selectivities apply. Figure 4 illustrates asize- and
age-selectivity pattern similar to that in the assessment for sablefish on the U.S. West Coast trawl
fishery*. The elements of the sampled size/age matrix depend upon the population
numbers-at-age/s ze, Sze-sdlectivity, age-selectivity, and catchability:

Cyajs = Qj pyaj Bylj d)yasN ya' (62)

4 Methot, R. D. 1994. Assessment of the west coast sablefish stock in 1994. In Status of the
Pacific coast groundfish fishery through 1994 and recommended acceptable biological catches for 1995.
Pacific Fishery Management Coundil, Porttand Oregon 97201.
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Figure 3. Population numbers at size/age. Vaues were extracted from intermediate calculations
within synthesis. Parameters included natural mortality at 0.07, constant recruitment for all years
except 4x recruitment 3 yearsprior to the sample, negligible fishing mortaity.
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Figure 4. Seledivity asafunction of both size and age. Size selectivity is0.10for the smallest
size category and is 1.0 above 50 cm. Age seledtivity is 1.0 for the youngest age and decreases
according to aconstrained logstic function to 0.5 at the accumulator age category. Overdl

sd ectivity is aproduct of Sze and age selecti vity.
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Body Weight-at-Age

The age-verson of synthesis uses externally calculated val ues of body we ght-at-ageto
convert population or catch numbers-at-age into population or catch biomass. Size synthesis
calculates these weights-at-age from the probability distribution of size-at-age, size-selectivity, and
the weight-length relationship. Because each fishery or survey has its own characteristic
size-selectivity, each will have its own characteristic mean body weight-at-age.

A

2 (W3,spysj¢yas)

W;’aj: FIA (63)
3 By
where:

W, w.

wiIL?>»+ WL
3,s:( 1hs) 2( those) isthe mean body weight-in-size bin's, (64)

W, and W,  are coefficients of the weight-length function, and

s isthe body size at the lower edge of the sth size bin.

Discard and Market Categories

In some situations, the catch may be partitioned (sorted) into various caegories before
samples can be collected. For example, there may be size-specific discard at sea before shoreside
samples of retained catch can be collected. Once shoreside, price differentials may cause the catch
to be sorted into market categories before random samples can be collected. Normally thereis
good sampling from all categories and an appropriately weighted sum of these various categories
can be calculated and used as data in the assessment model. However, all categories, especially at
seadiscard, may not be sufficiently well sampled to be included in an expanded total size and age
composition. Synthesis provides the capability to model the sorting process so that observaions
can be compared to expected val ues specific to each sampled sort category. Use of this capability
requires areldively stablesorting process

Sort (or market) categories are defined from smallest to largest and are specific to each
independent fishery. A four-parameter constrained logistic function (Equation 9) defines the
size-specific fraction of a sampleassigned to the smallest category; the remander is assigned to all
the larger categories. For each additional category that is defined, an additional constrained
logistic function defines the size-specific fraction retained within the category, with the remainder
going to the larger categories.
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Thus, the catch matrix is subdivided into A, market categories:

c, . =U . C (65)

yagm  “ygm “yas ’

where:

4
Z Upoim = 1.0. (66)

Observation Processin Size-Age M odel

Several kinds, k, of observations can be made from each sample, just asin age synthesis.
Synthesis allows size and age composition observations to be based on a specific sort category, m,
if categoriesare defined, or on the sum across dl categories.

First, the total catch biomass by a particular fishery (or aundance index for asurvey) is:

A A
Cy= D z (W;5€509) = aﬁ; (WiC00) (67)

The estimated proportion (by weight) of the fishery catch biomass in a particular market
categoryis:

A A
E 2 (W3,s cyasjm)

Py T _ (68)
Cyj

These proportions can be used in alikelihood component (kind = 7) based on a multinomial error
structure.

Size and age composition

The expected proportions-at-size (Figure 5) are cal culated by summing across all ages and
dividing by thetotal catch in the category.
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( cyaSJ‘m)

-1
/ |
Y. (g

a=1 s=1

A _ a
Pygima =

(69)
The expected proportions-at-size are observation kind = 4, and are compared to the observed
sample numbers at size in alog-likelihood formulation (Equation 35).

Observation kinds k = 1, 2 and 3 ref er to age composition i n the same manner asin the age
model. The expected true proportions-at-age are calculated by summing across all sizes and
dividing by thetotal catch in the category:

4
z (cya.sy'm)

= o=l . (70)

~
=)

Then, just as with the age-based model, these proportions at true age are converted to expected
proportions in each age bin, i, for each kind of ageing method, k. The population age composition,
sample age composition, and sample bin composition are shown in Figure 6.

One special capability of sizesynthesisisthe ability to examine the fit to the bin
composition within a specified range of size bins (observation kind = 6). This could be relevant
when age datawere not collected from the entire size range, or when there was interest in
examining the impact of two-staged sampling for ageing structures. The expected proportions for
age composition within arange of size bins (for example size bins 3 through 8 in Equation 71) are:

Y
D uim = .
yaj 2 i: (cyasjm)

a=1 s=3

(71)

These proportions at true age are then processed by the ageing matrix corresponding to observation
kind = 2. This process yields expected proportions by bin, p;;. ,» for use in amultinomial
likelihood calculation. Note that if an observation kind = 6 was defined for each size bin of a
sample, synthesis would effectively be fitting each row of the age-at-size matrix. This approach
deserves further consideration, especially when the size based sampling is good and the value
added from ageing a small number of specimensis uncertain.
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Figure 5. Population numbers at size, and sampled numbers at size after application of the size and
age selectivitiesin Figure 2 and summing acrossages.
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Figure 6. Population age composition, sample age composition after application of the size and
age selectivities in Figure 2, and summing across sizes, and sample age-bin composition after
applying the ageing imprecision matrix to the sample age composition.
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Size-at-age

A final transformation of the catch age/size matrix is calculation of expected values for

mean size-at-bin (observation kind = 5). Unlike conventional fitting of a growth curve to mean

Size-at-age data, fitting the size-at-bin data within synthesis takes size-selectivity and ageing
imprecision into account (Figure 7). Expected size-at-bin will differ between each survey and

fishery that has different size-selectivity. Also, ageing imprecision will make the expected mean

size for a particuar bin depend on the mean size and rd ative abundance of adjacent cohorts

(Tyler et al. 1989).
X1, . o
H X_Ol is the expected value for mean sizein bini,

DPyijms =

where:

A A
Xli = E 2 cya.sijiaZ W4,s’

A A
-3 Cyagm@iaz Waer aNd

(12,3 + 12,s+ 1) . . . . .
W,,= — ismean body sizein size bin, s.

The log-likelihood for the mean-size-at-bini observationis:

L 5= —0.5( i) 2—Ln(05,i).

5=
v Os,;
Where:
d is the deviation between observed mean size-at-binand g, ;.
X1.X1,
2,-
O, = L jsthe expected standard error of sizein bini, and
pNyiij X i

Pryijms is the number of fish in the calculation of observed mean size-at-bini.

(72)

(73)

(74)

(75)

(76)

(77)

(78)
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Figure 7. Populdion mean size-at-age, mean size-at-age in a sample with size seledivity asin
Figure 2, and mean size-at-age bin calculated after applying the ageing imprecision matrix to the
sample age composition. Note, that the effect of mis-ageing is to flatten the size-at-age vector,
especialy in the vicinity of the large, 3-year old year-class.
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PARAMETER ESTIMATION

Thetotal log-likelihood, , is maximized by iterative application of a quasi-Newton
method using the inverse Hessian. In order to apply this method, the first and second derivatives of
| with respect to each parameter, , and the mixed partial derivativesfor each parameter pair are
calculated. These derivatives are numericall y approximated by recalculating  after asmall delta,

, Isadded to each parameter sequentially. The Hessian matrix, , hasthe second derivatives on
the main diagond and the mixed partids on the off-diagonal .

The second derivative (curvature) is:

92 _ ).(oo,ﬂ,en) + ).(w,ﬁ,—en)—2).(w,6).

- (79)
aen €q %€y
The mixed partial with respect to parameters  and s
2 AMw,0,e ) - AM(w,0,e.) - A(w,0,e) + A(w,0
A 1€ = A 2~ AC O A )_ (80)

8Bn80K €,€x

Note, that the mixed partial is calculaed asymmetrically around the point{ , }. Inorder to
reduce potential for a bias, synthesis moves to aternative quadrants in subsequent calculaions (by
changing the sign on the tweaks) and it averages newly cal culated mixed partials with previous
values to achieve quasi-symmetric calculation.

The first derivative with respect to parameter  is:

aA, _ A(waeaen) - )-((D,e,_en).

(81)
aen 2e,
In aquasi-Newton method, the updated parameter values are calaulated from:
0, =06,,+H! aae—A (Using matrix notation). (82)

cur

However, isexpensive (in terms of function evduations) to calcuate. Therefore, synthesis
employs two modifications to take fullest advantage of the informationin . First, the
off-diagonal elementsof  are multiplied by ascalar, . At each iteration, synthesisscans up to
four valuesof , from 1.0 down to 0.0, to seek the value that maximizes the improvement in
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As approaches 0.0, the method ignores the mixed partials and the maximization method realizes
its steepest descent. At each value of , the program seeks (by golden section search) a second
scalar factor, , which determines the magnitude of parameter changes that maximize the
improvement in the likelihood. When  and gradient are highly informative about the diredion
and magnitude of maximum improvement, will haveavaluenear 1.0and  will have avalue of
at least 1.0.

The parameter estimation proceeds in stages, and each stage has aprogressively smaller
convergence criterion defined in terms of the changeinl. In atypical application, this convergence
criterion has avalue of 100 log-ikelihood unitsin thefirst phase, and declines by afactor of 10 in
each succeeding phase until it reaches a final convergence criterion of 0.01
log-likelihood units. Within each phase, the value of the each parameter’ s delta, , isadjusted,
within bounds, so that the resulting magnitude of the changein| is similar to the magnitude of the
convergencecriterion for tha phase. This adjugment causes the madel to search widely in early
phases when it is far from the final solution, and to calculate gradients in amuch smaller area
during the final stages.

Parameter variances and covariances are obtained directly from the inverse of the
information matrix, , (Richardsetd. 1997). In addition, the variance of spawning biomass, S,
is calculated through the delta method:

A A
oS oS
S) = T A 83
vars,) ni; Z:, 06, 06, ®3)

where the gradient of spawning biomass on a parameter is calculated from

Yy

aen 2en

85, _ 5,0, - S0,

(84)
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DISCUSSI ON

Synthesiswas initially designed to include age composition information in asimple
biomass-based production model for northern anchovy (Methot 1989). Subsequently, synthesis
evolved to aflexible tool to analyze awide variety of fishery and survey data typically available for
groundfish populations off the U.S. West Coast and Alaska (Methot 1990). During the mid-1990s,
the age and size versions of synthesis were used for most groundfish assessments in these areas.
These assessments were the primary source of information on thestatus of these species and their
potential yidd. The ability of synthesisto simultaneously incorporate awide variety of data
sources made best advantage of these data, identified inconsistend es between some data sources,
and helped to identify the degree to which these west coast groundfish assessments are
handicapped by infrequent and lacking data.

Synthesis assessments have andyzed available fishery and survey data and, in some cases,
have included estimation of spawner-recruitment curves to both obtain information about the shape
of this curve and to constrain estimates of recruitment in data-poor situations. Assessments which
use the size-synthesis model have been able to estimate parameters of body growth aswell as
estimatesof populaion abundance. These estimates of body growth use infarmation insize
composition and size-at-age data, and take into account size-selectivity of gear used to collect
samples and imprecision in the process for determining fish age.

Fully testing the performance of synthesis has lagged behind the development of featuresto
address the needs of current stock assessments. Tests of age synthesis include Bence and
Hightower (1993), Sampson (1993), Sampson and Yin (1998), and Methot (1998). All show that
the model accuraely tracks known population trends when good data are availeble, but imprecise
or biased datawill lead to high variability in results. The more detailed size synthesis model
performed well with high precision simulated data (Methot 1994), but an extensive test of its
ability to simutaneously estimate both growth and population parameters from imprecise datais
needed.

Synthesis was written in FORTRAN and its coding evolved throughout the 1990sin
response to the needs of the West Coast and Alaska stock-assessment community. The coding of
the conceptual model described in this document lacks the structure and clarity that can be more
easily achieved with today s generation of object-oriented languages. Over the past several years,
many concepts of synthesis have been recreated and enhanced in models written in a modern fourth
generation language (landli and Fournier 1998). In particular, the newer implementations
incorporate much advancement in methods to estimate and portray variance in parameter estimates
and model results. Synthesisremainsin use today. Over the next few yearsit is expected to be
fully replaced by models written in fourth generation languages which will be more powerful, more
fully documented and tested, and still flexible enough to be as adaptabl e as synthesis has been.
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APPENDIX A: STOCK SYNTHESISNOTATION

This section contains a complete list of quantities referred to in the text and equations of
thisreport. The quantities are grouped into six categories. For the last 3 categories, the “type” of
quantity isidentified as P = parameter that can be kept constant at its inpur value or included in the
list of quantities estimated by the model fitting procedure, | = fixed input coefficient., blank =
internally caculated quantity.

Indices and index ranges

a age

y year

S length (size) bin

[ bin for observed age

m bin for market category

] index for source of data (fisheriesand surveys)
k index for kind of age/size observation

: indexes for parameters

r index for geographic area

h age at recruitment

A accumulator age-class for population

A number of bins for observed age by agang method k
1y bin boundaries for ageing method k

A2 number of bins for size

s bin boundaries for size s

A3 number of market categories

A4 number of fisheries

A5 number of fisheries and surveys

A6 number of parameters

A7 number of estimated recruitments

AR number of agesin initial age composition for which non-equilibrium

numbers-at-age are estimated

Y number of years



Data
C

Vi

Gyj
Ey

Pyijma
Pyijme
pyij m3
pysj m4
Pyijms
pN, yijm5

pyij m6

Byimz

yjmk
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catch biomass for fishery j inyeary
CPUEfor fishery or survey j inyeary
fishing effort for fishery j inyeary

proportion in bin i from market category mfor fishery or survey j in year y, with no
ageing error (k=1)

proportion in bin i from market category mfor fishery or survey j inyeary, with
normally distributed ageing error (k=2)

proportion in bin i from market category mfor fishery or survey j in yeary, with
user-defined ageing error and bias (k=3)

proportion in size bin s from market category mfor fishery or survey j inyeary
(k=4)

mean size-at-bin i from market category m for fishery or survey j in yeary, with
normd ly digtributed ageing error (k=5, s ze model only)

sample size for mean size-at-bin i from market category mfor fishery or survey j in
year y (3 ze model only)

proportion in bin i from market category mfor fishery or survey j inyeary, with
normally distributed ageing error and within aspecified range of size bins(k=6, size
modd only)

proportion (by wel ght) in market category mfor fishery j in year y (k=7, size model
only)

sample size used to scale the variability of age and size composition proportions

Parameter s and quantities used in estimation

parameter vector, which contains variables identified with aP in this table
total log-likelihood

weighting factor for alog-likelihood component

negative Hessian matrix of mixed partial derivativesof  with respect to

log-likelihood for a component
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Biological Characteristics

M

a
M,, M,, M,
m,

m, m,
W,
W, W,
W,
W4,s
JW)
3, J2
L.
t,t,

natural mortality

one to three parameters to define natural mortality asf (a)
proportion mature

two coefficients for logistic maturity function

body weight-at-age for sourcej in yeary

two coefficients for weight-at-length function

mean body weight in sizebins

mean body sizeinbins

eggs per kg body weight for mature spawners (linear function)
two coefficients for egg function

mean body length at ageain yeary

two ages at which growth curve parameters are indexed
two parameters for size at agest, and t,

von Bertalanffy growth parameter

mean asymptotic size at i nfinite age

body size at lower edge of sizebins

Population States and Processes

N

ya

N

ya
1
Ny,

N,

S
R/
Roo

numbers-at-age at beginning of year y

mean numbers-at-age in year y

numbers-at-age at the specified time of a particular survey inyear y

numbers-at-age in first year for ages Ag

female egg production (or spawning biomass) in year y
recruitment to first age-classin yeary

initial equilibrium recruitment level

initial numbers-at-agefora A

density-dependence in spawner-recruitment function
recruitment level in spawner-recruitment function

fishing mortdity factor for fishery j inyeary

TYPE

TYPE

T U U U TV T
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selectivity for agea (or size s) in fishery or survey j inyeary

1 10 s ectivity parametersfor fishery or survey | P
T,andT, age or sizeinterval over which a selectivity function is calculated | or P
Fra fishing mortality rate for ageainfishery j inyeary
Z, total mortality rate for ageain yeary
B,; exploitable (available) biomassfor fishery or survey |
Yiia proportion of agea in arear migrating to arear inyeary
Y, toY,, parameters defining migration vectors
Q; catchability coefficient for fishery or survey |
Q; power coefficient for CPUE infishery |

yas proportion of population in length bin sfor ageain year y (size model)

Cyais catch numbers at age a and length s from fishery or survey j inyeary
P yaim proportion at true agea from market category mfor fishery or survey j inyeary

ok proportion of age a assigned to bin i by ageing method k | or P

wa proportion of age a assigned to size bin s by ageing method 4 (age model) I
Standard Deviation TYPE

R standard deviation of recruitment process error P

. RM SE of estimated recruitments

2y standard devi aion of CPUE for fishery or survey |

2 RMSE of CPUE for fishery or survey |

Lya standard deviation of size at agein yeary

L1 L2 two parameters fromwhich |, iscalculated P

4a standard deviation of bin assignment at true agea

41 42 two parameters from which , iscalculated P

standard deviation of sizeinbinii

standard deviation for prior on parameter n I



