• Projects
  • Juvenile salmon in the Columbia River estuary: Action Effectiveness Monitoring and Evaluation

Breadcrumb

Northwest Fisheries Science Center (NWFSC) Fish Ecology FE - Estuarine and Ocean Ecology

Information

Project
Action Effectiveness Monitoring and Evaluation-Columbia Estuary
Title
Juvenile salmon in the Columbia River estuary: Action Effectiveness Monitoring and Evaluation
Description
This project is focused on juvenile salmon as they traverse the Columbia River estuary and is a joint collaboration between CB/FE/EFS Divisions, Oregon State University (OSU), and the Pacific Northwest National Laboratories (PNNL). The first phase of this project was designed to determine whether the expected benefits of estuarine habitat restoration are realized by ESA-listed salmon, either directly (occupying restored habitats) or indirectly (consuming prey produced by restored sites). Synthesis of our data has demonstrated linkages between prey production in tidal marshes, the export (flux) of prey into the mainstem, diets of ESA-listed salmonids in the mainstem, and increased growth and presumed survival. Our results also demonstrate greater variability in yearling migration strategies than previously documented.

This study has advanced regional knowledge beyond site-specific documentation of wetland function to demonstrate direct effects of wetland production on yearling salmon feeding and growth in the mainstem, challenging established paradigms of movement, feeding, and growth of ESA-listed yearling smolts in the lower Columbia river. NOAA’s West Coast Regional Office has found these results to be highly relevant and have incorporated our results into the 2019 BIOP.

In the next phase of the study, we propose to build on our previous findings and explore potential benefits to listed yearling salmonids of using migration pathways other than mainstem habitats. Examination of yearling migration patterns outside of the mainstem is underrepresented in lower Columbia River research. Continued research in this area will help resource managers and restoration practitioners make informed decisions toward estuary restoration and salmon recovery.

Research Themes

Ecosystem approach to improve management of marine resources
The California Current Large Marine Ecosystem, Puget Sound and the Columbia River Basin are home to a wide range of freshwater and marine resources that provide a wealth of ecosystem goods and services. Ensuring the resiliency and productivity of the California Current and Pacific Northwest ecosystems requires an integrated understanding of their structure, function, and vulnerability to increased human population growth in coastal communities and competing uses of coastal waterways and oceans. The NWFSC‘s approach to understanding these large ecosystems integrates studies across ecosystems (terrestrial, freshwater, and marine) and scientific disciplines to inform resource managers responsible for conserving marine resources.
Habitats to support sustainable fisheries and recovered populations
Healthy oceans, coastal waters, and riverine habitats provide the foundation for aquatic resources used by a diversity of species and society. Protecting marine, estuarine and freshwater ecosystems that support these species relies on science to link habitat condition/processes and the biological effects of restoration actions. The NWFSC provides the habitat science behind many management actions taken by NOAA Fisheries and other natural resource agencies to protect and recover aquatic ecosystems and living marine resources. The NWFSC also maintains a longstanding focus on toxic chemical contaminants, as a foundation for regional and national research on pollution threats to fisheries and protected resources.
Recovery and rebuilding of marine and coastal species
The Pacific Northwest is home to several iconic endangered species, including Pacific salmon and killer whales, and several rockfish species. Mandates such as the Endangered Species Act, MagnusonStevens Act, and the Marine Mammal Protection Act, grant NOAA Fisheries the authority to manage the recovery of depleted species and stocks. The NWFSC contributes to species recovery through research, monitoring and analysis, providing NOAA managers and regional stakeholders the tools and information they need to craft effective regulations and develop sustainable plans for recovery.

Research Foci

Characterize ecological interactions (e.g. predation, competition, parasitism, disease, etc.) within and among species
Predator-prey interactions, inter- and intra-specific competition, and parasites and pathogens influence the survival, growth, and reproductive success of anadromous and marine fishes, marine mammals and other marine organisms. Moreover, anthropogenic stressors, such as pollution and fishing, can influence these interactions. Because of the complex nature of these interactions, addressing questions about ecological interactions will require novel field and laboratory studies and analyses. This includes ecosystem models, use of innovative technologies (e.g., otolith microchemistry and stable isotopes), integration of sample collection efforts with those of the Ocean Observing System entities on the west coast, and quantifying interactions among environmental stressors, species behavior and ecosystem processes.
Characterize the interaction between marine, freshwater, and terrestrial ecosystem components
Although many species migrate between connected aquatic, marine, estuarine and freshwater environments they are commonly studied and managed as separate ecosystems. Environmental conditions in both marine and freshwater areas are strongly influenced by flows of water, sediment, organic matter and nutrients among ecosystems. Moreover, many threats (e.g., pollution, habitat loss, climate change, etc.) to marine organisms cross land-sea boundaries. Successful management of aquatic systems thus requires an understanding of linkages among ecosystems, including study of how specific habitats (e.g., headwaters, floodplains, submerged aquatic vegetation, nearshore zones, plumes and frontal regions) contribute to the productivity and capacity of ecosystems, and how to prioritize ecosystem protection or restoration within the context of the entire freshwater-estuarinemarine ecosystem.
Describe the relationships between human activities and species recovery, rebuilding and sustainability
Human activities play a major role in determining the status of species and stocks. Rebuilding and recovery therefore need to address how these activities affect their status. At the NWFSC, biophysical modeling is used to link specific human activities such as land use and pollution to habitat conditions, and then to link these conditions and other activities to particular life stages. These models can be used to quantitatively assess how human activities influence species abundance, productivity, distribution and diversity. Not surprisingly, altering human activities in some way is often necessary for species or stock recovery and rebuilding. It is therefore important to understand the socio-economic effects of alternative management structures. Gathering data on their economic costs and social impacts helps identify actions that are cost-effective. These actions will need to be resilient to potential changes in climate throughout the region. Research on how humans react to management strategies helps policy makers avoid those that lead to unintended consequences that can hinder rather than help recovery.
Develop effective and efficient habitat restoration and conservation techniques
Maintaining and re-establishing viability and sustainability of living marine resources requires conservation and rehabilitation or restoration of habitats upon which species depend. Common habitat restoration approaches and tech-niques often presume that habitats are static features of the environment, and that creation of stable habitats is a desirable restoration strategy. However, riverine, nearshore, and marine habitats are created and sustained by dynamic landscape, climatic, and oceanographic processes and biota are adapted to changing habitats that are within the range of natural variability. Hence, current restoration strategies often have limited success, in part because they fail to recognize larger scale processes that drive habitat change, and in part because they fail to recognize intrinsic habitat potential of individual restoration sites. The main goals of this research focus are to: improve understanding of how large-scale processes create diverse and dynamic habitats that support marine and anadromous species, better understand how human activities alter habitat-forming processes and habitats, develop new restoration techniques that are compatible with sustainable habitat-forming processes, and understand the variety of actions needed to adequately conserve intact critical habitats. In addition, NWFSC’s research will improve understanding of how new and existing habitat restoration and protection techniques affect fish and habitat at multiple scales (i.e., reach, watershed, Evolutionarily Significant Unit).
Develop methods to use physiological, biological and behavioral information to predict population-level processes
Understanding the biological processes occurring within organisms is a powerful way of understanding how environmental changes affect those organisms. Genetics, developmental, physiological and behavioral studies all provide important information for effective species recovery and rebuilding. Integrating this information into models is vital to predict how populations will respond to natural or human perturbations, and to assess the constraints to stock rebuilding efforts. For example, data on thermal tolerance and physiological responses to temperature can be used to explore changes caused by shifts in climate on reproductive behavior and productivity, viability, movement, habitat selection, and population dynamics. Similarly, data on contaminants that impact physiological processes (immune system, growth, development, reproduction, and general health) are critical in determining how these compounds affect population dynamics. Data on biological responses of organisms to ocean acidification are useful for understanding how acidification may affect individual development and survival. The NWFSC collects such information for several species that are of concern, targets of fisheries or otherwise important for overall ecosystem function. NWFSC scientists will continue to expand current efforts and develop methods to incorporate physiological, biological and behavioral data into population models in order to predict population-level processes from these individual level data.
Evaluate the effects of artificial propagation on recovery, rebuilding and sustainability of marine and anadromous species
Artificial propagation has the potential to provide benefits both to species recovery and to seafood sustainability. Artificial propagation also poses risks to wild species and ecosystems. In the past, the use of artificial propagation has been an important risk factor for several threatened and endangered species, particularly Pacific salmon. Assessing the effects of artificial propagation is complicated by the fact that programs vary widely in size, rearing practices, and goals. The NWFSC conducts critical research on the influence of artificial propagation on population dynamics, growth rate, ecology of infectious disease, and the evolutionary fitness of wild fish and other marine organisms. Results of this research are needed to support the recovery of fish populations and have been especially valuable in providing critical information for recent, larger scale habitat restoration activities such as the Elwha Dam removal. NWFSC will continue to conduct science that informs the discussion about whether to allow fish to recolonize naturally after barrier removal, or to supplement populations with hatchery fish and on the impacts of aquaculture on fishing pressure and practices, and on the surrounding environment and ecosystem.

Keywords

Columbia River estuary
Columbia River estuary
Juvenile fishes
juvenile life history stage of fishes, typically during their first year of life
Oncorhynchus spp.
salmon species
migratory corridor
Sampling in migratory corridors of the lower Columbia estuary
purse seine
use of a purse seine to sample fish
restoration
habitat restoration

Products

Restoration Action Effectiveness Monitoring and Research in the Lower Columbia River and Estuary, 2016-2017
Annual report to USACE

Taxa

Species Alosa sapidissima
American shad, shad
Species Clupea pallasii
Pacific herring
Species Engraulis mordax
Californian anchovy, northern anchovy
Species Gasterosteus aculeatus
three-spined stickleback, threespine stickleback, threespine stickletback
Species Hypomesus pretiosus
surf smelt
Species Oncorhynchus clarkii
cutthroat trout
Species Oncorhynchus keta
chum salmon, dog salmon, Keta salmon
Species Oncorhynchus kisutch
Coho salmon, silver salmon
Species Oncorhynchus mykiss
rainbow trout, steelhead trout, syeelhead trout
Species Oncorhynchus nerka
kokanee, red salmon, sockeye salmon
Species Oncorhynchus tshawytscha
Chinook salmon, king salmon, spring salmon
Species Spirinchus thaleichthys
longfin smelt

People

Brian Beckman
Co-Lead
Brian Beckman
Co-Lead
Brian Burke
Supervisor
Curtis Roegner
Principal Investigator
David Huff
Program Manager
Donald Van Doornik
Internal Collaborator
Kym Jacobson
Internal Collaborator
Laurie Weitkamp
Co-Lead
Laurie Weitkamp
Co-Lead
Meredith Journey
Internal Collaborator
Regan McNatt
Co-Lead
Susan Hinton
Internal Collaborator