Breadcrumb

Northwest Fisheries Science Center (NWFSC) Fish Ecology FE - Watershed

Information

Project
Egg-to-Fry Survival
Title
Chinook Egg-to-Fry Survival
Description
Few estimates of Chinook egg-to-fry survival exist despite the fact that this is thought to be one of the life stages limiting production of many listed Chinook populations. The objective of this project is to estimate egg-to-fry survival for Chinook salmon at a variety of habitat conditions throughout the Yakima & Wenatchee basins. Egg-to-fry survival is estimated in more than 100 artificial redds in nine reaches in the Yakima and three in the Wenatchee River.

Research Themes

Habitats to support sustainable fisheries and recovered populations
Healthy oceans, coastal waters, and riverine habitats provide the foundation for aquatic resources used by a diversity of species and society. Protecting marine, estuarine and freshwater ecosystems that support these species relies on science to link habitat condition/processes and the biological effects of restoration actions. The NWFSC provides the habitat science behind many management actions taken by NOAA Fisheries and other natural resource agencies to protect and recover aquatic ecosystems and living marine resources. The NWFSC also maintains a longstanding focus on toxic chemical contaminants, as a foundation for regional and national research on pollution threats to fisheries and protected resources.
Recovery and rebuilding of marine and coastal species
The Pacific Northwest is home to several iconic endangered species, including Pacific salmon and killer whales, and several rockfish species. Mandates such as the Endangered Species Act, MagnusonStevens Act, and the Marine Mammal Protection Act, grant NOAA Fisheries the authority to manage the recovery of depleted species and stocks. The NWFSC contributes to species recovery through research, monitoring and analysis, providing NOAA managers and regional stakeholders the tools and information they need to craft effective regulations and develop sustainable plans for recovery.

Research Foci

Characterize relationships between habitat and ecosystem processes, climate variation, and the viability of organisms
Developing effective conservation and restoration strategies for species or populations requires a clear understanding of how ecosystem processes and climate change will influence the viability of organisms in the future. Key research needs include (1) evaluating the vulnerability of organisms and ecosystems to climate change and human impacts (e.g., fishing, pollution, land use), and (2) devising adaptation strategies that will help achieve conservation goals despite climate change and increasing human pressures. Understanding how climate change or trends in human impacts might influence organisms is based on an understanding of linkages between ecosystem processes, habitat conditions, and abundance, survival or demographics of organisms. This necessitates modeling influences of ecosystem processes on habitats and species, or developing models to examine influences of human pressures on population or ecosystem dynamics. With this foundation, vulnerability assessments can focus on understanding how interactions between climate change and human impacts influence vulnerability of species or populations. Adaptation strategies require knowledge of current conservation needs, predictions of how those needs might change as a result of climate change or future human impacts, and assessments of the robustness of alternative conservation strategies or techniques to climate trends.
Develop methods to use physiological, biological and behavioral information to predict population-level processes
Understanding the biological processes occurring within organisms is a powerful way of understanding how environmental changes affect those organisms. Genetics, developmental, physiological and behavioral studies all provide important information for effective species recovery and rebuilding. Integrating this information into models is vital to predict how populations will respond to natural or human perturbations, and to assess the constraints to stock rebuilding efforts. For example, data on thermal tolerance and physiological responses to temperature can be used to explore changes caused by shifts in climate on reproductive behavior and productivity, viability, movement, habitat selection, and population dynamics. Similarly, data on contaminants that impact physiological processes (immune system, growth, development, reproduction, and general health) are critical in determining how these compounds affect population dynamics. Data on biological responses of organisms to ocean acidification are useful for understanding how acidification may affect individual development and survival. The NWFSC collects such information for several species that are of concern, targets of fisheries or otherwise important for overall ecosystem function. NWFSC scientists will continue to expand current efforts and develop methods to incorporate physiological, biological and behavioral data into population models in order to predict population-level processes from these individual level data.

Keywords

Chinook salmon
species of interest
survival
Survival

Products

None associated

Taxa

Species Oncorhynchus tshawytscha
Chinook salmon, king salmon, spring salmon

People

George Pess
Principal Investigator